Effects of dihydropyridine receptor II-III loop peptides on Ca(2+) release in skinned skeletal muscle fibers.

نویسندگان

  • G D Lamb
  • R El-Hayek
  • N Ikemoto
  • D G Stephenson
چکیده

In skeletal muscle fibers, the intracellular loop between domains II and III of the alpha(1)-subunit of the dihydropyridine receptor (DHPR) may directly activate the adjacent Ca(2+) release channel in the sarcoplasmic reticulum. We examined the effects of synthetic peptide segments of this loop on Ca(2+) release in mechanically skinned skeletal muscle fibers with functional excitation-contraction coupling. In rat fibers at physiological Mg(2+) concentration ([Mg(2+)]; 1 mM), a 20-residue skeletal muscle DHPR peptide [A(S(20)); Thr(671)-Leu(690); 30 microM], shown previously to induce Ca(2+) release in a triad preparation, caused only small spontaneous force responses in approximately 40% of fibers, although it potentiated responses to depolarization and caffeine in all fibers. The COOH-terminal half of A(S(20)) [A(S(10))] induced much larger spontaneous responses but also caused substantial inhibition of Ca(2+) release to both depolarization and caffeine. Both peptides induced or potentiated Ca(2+) release even when the voltage sensors were inactivated, indicating direct action on the Ca(2+) release channels. The corresponding 20-residue cardiac DHPR peptide [A(C(20)); Thr(793)-Ala(812)] was ineffective, but its COOH-terminal half [A(C(10))] had effects similar to A(S(20)). In the presence of lower [Mg(2+)] (0.2 mM), exposure to either A(S(20)) or A(C(10)) (30 microM) induced substantial Ca(2+) release. Peptide C(S) (100 microM), a loop segment reported to inhibit Ca(2+) release in triads, caused partial inhibition of depolarization-induced Ca(2+) release. In toad fibers, each of the A peptides had effects similar to or greater than those in rat fibers. These findings suggest that the A and C regions of the skeletal DHPR II-III loop may have important roles in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and functional characterisation of the interaction of the dihydropyridine receptor II-III loop with the ryanodine receptor

1. Excitation-contraction coupling in skeletal muscle is dependent on a physical interaction between the dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR). 2. A number of peptides derived from the II-III loop region of the DHPR have been shown to be functionally active in stimulating the release of calcium via RyR channels. Their function has been found to correlate with the pres...

متن کامل

3D Structure of the Dihydropyridine Receptor of Skeletal Muscle.

Excitation contraction coupling, the rapid and massive Ca(2+) release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR1) mediates the quasi-instantaneous conversion from T-tubule d...

متن کامل

Ca2+ Release in Muscle Fibers Expressing R4892W and G4896V Type 1 Ryanodine Receptor Disease Mutants

The large and rapidly increasing number of potentially pathological mutants in the type 1 ryanodine receptor (RyR1) prompts the need to characterize their effects on voltage-activated sarcoplasmic reticulum (SR) Ca(2+) release in skeletal muscle. Here we evaluated the function of the R4892W and G4896V RyR1 mutants, both associated with central core disease (CCD) in humans, in myotubes and in ad...

متن کامل

Characteristics of phosphate-induced Ca(2+) efflux from the SR in mechanically skinned rat skeletal muscle fibers.

The effects of P(i) on sarcoplasmic reticulum (SR) Ca(2+) regulation were studied in mechanically skinned rat skeletal muscle fibers. Brief application of caffeine was used to assess the SR Ca(2+) content, and changes in concentration of Ca(2+) ([Ca(2+)]) within the cytosol were detected with fura 2 fluorescence. Introduction of P(i) (1-40 mM) induced a concentration-dependent Ca(2+) efflux fro...

متن کامل

Effect of lactate on depolarization-induced Ca(2+) release in mechanically skinned skeletal muscle fibers.

It is unclear whether accumulation of lactate in skeletal muscle fibers during intense activity contributes to muscle fatigue. Using mechanically skinned fibers from rat and toad muscle, we were able to examine the effect of L(+)-lactate on excitation-contraction coupling independently of other metabolic changes. We investigated the effects of lactate on the contractile apparatus, caffeine-indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 279 4  شماره 

صفحات  -

تاریخ انتشار 2000